
Time Domain Source Separation with Spectral Penalties

Andrey Akhmetov
The Cooper Union

New York, NY, USA

Ostap Voynarovskiy
The Cooper Union

New York, NY, USA

Abstract— Models that perform musical source separation
typically work purely in the time domain (e.g. Wave-U-Net)
or only in the magnitude spectrum, thus omitting phase
information. We extend the work of Wave-U-Net which achieved
end-to-end source separation in the time domain using one-
dimensional convolutions by investigating alternative loss func-
tions operating on a spectral representation of audio. Our
experiments show that a loss function in the spectral domain
is appropriate for penalizing errors in a time-domain source
separation network, with rapid convergence and comparable
subjective audio quality.

I. INTRODUCTION
Source separation is a signal processing problem with the

goal of extracting one or more individual sources from a
mixed audio stream. Technologies like hearing aids, home
assistants like Google Home or Amazon’s Alexa, and music
post-production software all stand to benefit from the ability
to separate audio streams from a single audio source. Nearly
all of the recent success in the field has performed sound
separation on the spectrogram of the audio instead of the
raw wave forms [1]. However, performing source separation
on the spectrograms has the major drawback of completely
omitting the phase information. Before neural networks, ma-
trix decomposition methods such as independent component
analysis (ICA) [2] and non-negative matrix factorization
(NMF) [3] had been used in the field. Performing NMF
required constraining the information to non-negative values,
which worked well for a magnitude spectrogram but could
not be used for the -1 to 1 values of a raw waveform.
ICA was thus the method of choice for processing wave
forms. ICA struggled however as the unpredictable phase
component meant that a single basis could not represent a
source so either shift invariant bases or many bases were
required. Though some matrix decomposition methods were
designed to operate on the direct wave forms, they did not
perform as well as their spectrogram based counterparts. The
phase information presented difficulties which researchers
could not overcome with the tools they had at the time, so
they often chose to drop the phase information altogether
and operate primarily on spectrograms instead.

Since neural net based source separation was introduced,
the models predominantly focused on spectrogram repre-
sentations of the audio [10]. The model took sequential
spectrogram frames as input to the model and output a
prediction in the form of a spectrogram. To recreate the au-
dio, the output spectrogram was combined with the mixture
phase and fed through an inverse STFT. Instead of using
the mixture phase, the source phase could be estimated by

using the Griffin-Lim algorithm but this is quite slow [4].
The spectrogram output also depends on the type of window
used, the size of the window, and the overlap of frames.
Ideally these parameters should be tuned to provide better
results. However, doing so is computationally expensive as
one would need to train multiple models to completion,
therefore one set of parameters is chosen and no tuning is
performed.

Wave-U-Net was introduced in order to investigate the
feasibility of performing end to end sound source separation
directly in the time domain [5]. The implementation proved
that performing source separation directly in the time domain
outperformed the state-of-the-art spectrogram based u-net
architecture when trained under comparable settings.

The authors of Wave-U-Net highlight a lack of temporal
input context in recent models. Audio recordings are sampled
at 44.1 kHz. Thus to be able to analyze and effectively extract
a source from a mixed audio track, a model requires quite
a large input size. The Wave-U-Net authors also realized
that when a model’s input and output sizes are identical,
concatenating the sequential outputs results in artifacting at
the boundary between the two outputs. To tackle this they
proposed using an input size greater than their output size to
allow for the output to gain a contextual understanding and
prevent these boundary artifacts.

Inspired by the success, we decided to explore the au-
thors’ suggested future work and analyze a variety of loss
functions to see if performance improvements can be made.
We propose a scheme for source separation that retains the
use of the Wave-U-Net topology, which operates directly on
time-domain samples, while using a penalty function that
operates on the STFT of predicted and ground-truth outputs.
This allows us to retain the ability to reconstruct phase (a
task that models operating on the magnitude spectrum cannot
do without additional post-processing), while exploring the
qualitative and perceptual effect of penalizing magnitude and
phase errors directly.

II. RELATED WORK

Other papers that tackle audio source separation in the
time domain include TasNet [6] and MRCAE [7]. Time
domain Audio Separation Network or TasNet, is a convolu-
tional auto-encoder designed for the problem of multi-talker
acoustic environments. Dissatisfied with the poor spectro-
gram reconstruction for speech separation, and the latency
introduced by needing to calculate the spectrogram, Luo et
al. decided to use an auto-encoder architecture. Their model

decomposes the signal into a set of basis signals then uses
masks to extract the source signal [6]. While the model is
effective, the authors of Wave-U-Net highlight the fact that
certain conceptual tradeoffs are made in order to allow for
the model’s ability to be used for low latency applications.

The Multi-Resolution Convolutional Auto-Encoder or
MRCAE is a fully convolutional denoising auto encoder with
5 convolutional filters of different lengths in parallel for each
of 2 layers of the encoder and decoder. The encoder seeks to
extract multi-resolution features from the input mixtures and
the decoder uses these features to estimate the sources [7].
The model’s performance is likely limited by a few factors.
First off, the encoder and decoder are only 2 convolutional
layers deep, which is likely not deep enough to extract
meaningful high dimensional representation of the sound
source. Additionally, it only operates on 1025 samples (about
23 ms) which likely limits the models ability to exploit the
context of the input signal to a much of a degree.

The Wave-U-Net[5] has shown the most success for end
to end sound source separation in the time domain. Utilizing
a 1-dimensional adaptation of the U-net [8], the model
alternates stacking convolutional layers on top of downsam-
pling layers. It increases the number of filters with every
convolution in order to extract more complex features. Once
reaching the last downsampling block and convolving one
more time, it begins a series of upsampling, concatenation,
and convolutional layers. On this side it decreases the number
of filters with every convolution until it reaches the top layer
and the concatenation is performed with the respective layer
on the downsampling side along the filter dimention. Finally
it uses a set of convolutions of size one to collapse the filter
dimension into a stereo audio track.

III. MODEL

A. Topology

Our topology differs slightly from the one described in
[5], but it follows the same basic structure. In order to save
on computational time we made the decision to downsample
from 44.1 kHz to 22.05 kHz. Although some may argue
retaining CD quality is of utmost importance, we could not
notice a significant decrease in quality and it allowed us
to save time on the limited compute resources we had. We
however did decide to use stereo audio channels.

The model consists of 11 downsampling layers, which
detect increasingly higher level features on coarser and
coarser timescales, and 11 upsampling layers which allow
the information extracted by the high dimensional features
to be used to reconstruct a source-separated audio stream.

The downsampling path is constructed from alternating
1D convolutions and 2x downsampling operations. Each
convolution uses a kernel with length 15 samples and adds
no padding; the downsampling is performed by discarding
every other sample. Each downsampling layer is followed
by a leaky-relu activation.

The upsampling path consists of 2x upsampling operations
(performed using linear interpolation), 1D convolutions (ker-
nel length 5, no padding), a leaky-relu activation function,

and concatenation operations. The last 1D convolution uses
a kernel length of 1 and is followed by hyperbolic tangent
activation to provide the -1 to 1 output required for audio.
Each concatenation operation takes samples from a corre-
sponding layer of the downsampling path, crops it in time to
have the correct length, and concatenates it along the channel
dimension. This provides robust skip connections from input
to output, allowing audio samples and higher-level features
to be reconstructed at every timescale as necessary.

Transposed strided convolutions are often used as a
method of upsampling. However, they are known to intro-
duce high frequency noise into the final output. Instead we
upsample with linear interpolation. To avoid extrapolating the
last point, the output of the upsampling is kept uneven, and
only interpolation is performed. This furthers our attempts
to prevent artifacting.

In addition padding was intentionally avoided. Padding
enables the output of a convolution to be equal to the
input size, however the zeros padded to either side of the
data introduce artifacting at the edges of the final audio
stream. We also wanted to ensure that the model obtained
temporal context. We accomplished this by setting the output
of our model to be smaller than the input. This means
that the model only has to extract the source audio for the
middle 0.65 seconds in an approximately 3 second audio
clip. By starting with an uneven number of samples at the
input, avoiding padded convolutions and not extrapolating
when upsampling, we ensured that our model would have
contextual information about the source it was trying to
extract.

Table 1 and 2 depict the specific size of the model’s output
samples and channels after each layer of the network. A
complete table was included to help readers better understand
the output sizes of the model at each step and offer a sanity
check to anyone attempting to re-implement our model.

B. Loss functions

The previous section described the network topology and
structure that was utilized. Here, we discuss a number of loss
functions that we tested on this topology.

1) Time-domain losses: The prior work performed by
Wave-U-Net uses mean squared error over all samples in
a batch [5]. Since we predict only one stereo track at a
time (for example, drums) we simply take the average mean
squared error over all samples in both left and right channels,
with respect to the corresponding samples of the ground-truth
audio. This result is used as a baseline for our experiments.

We also briefly experiment with mean absolute error,
applied in the same way. Because mean absolute error
penalizes severe outliers more weakly than mean squared
error, we expect that it will yield a noticeable difference that
we can investigate, as compared to MSE.

2) Frequency-domain losses: We also investigate a few
loss functions that operate in the frequency domain. Although
prior work preceding Wave-U-Net operated purely in the
frequency domain, we retain the time-domain convolutions

and resampling operations of Wave-U-Net, moving only
penalization to the frequency domain.

Computation of each of these losses begins by performing
an STFT over the prediction and ground truth samples. The
frame length is 4096 and the stride is 2048; the last frame
is padded to length with zeros. For each training example,
we obtain ground truth complex-valued STFT Y (m,n) and
prediction STFT Ŷ (m,n) with m ranging over frame index
and n ranging over DFT frequency bins. We consider the
following error functions E(m,n), which are averaged over
all possible (m,n) pairs to obtain the final loss:

1) Squared error in phase and magnitude considered sep-
arately:

Em(m,n) =
(
|Y (m,n)| − |Ŷ (m,n)|

)2

Ep(m,n) =
(
Arg (Y (m,n))−Arg (Ŷ (m,n))

)2

E(m,n) = aEm(m,n) + bEp(m,n)

with hyperparameters a and b both positive.
2) Euclidean distance between phasor representations:

E(m,n) = |Y (m,n)− Ŷ (m,n)|2

3) Euclidean distance between stretched phasors:

E(m,n) =

∣∣∣∣∣ Y (m,n)

(|Y (m,n)|+ ε)α
− Ŷ (m,n)

(|Ŷ (m,n)|+ ε)α

∣∣∣∣∣
2

Includes hyperparameter α within [0, 1]. If α = 0 this
reduces to case (2).

4) Magnitude-only squared error:(
|Y (m,n)| − |Ŷ (m,n)|

)2

IV. EXPERIMENTS

We evaluate the model’s performance on the task of
extracting the drum component from a mastered song.

A. Dataset

We make use of the MUSDB18 [9] database, which con-
sists of mastered audio tracks along with separated compo-
nents consisting of drums, bass, accompaniment, and vocals.
We retain both left and right channels and downsample all
audio to 22050 Hz.

B. Training Procedure

The model was built using Tensorflow. Training was per-
formed on a machine with an i7-4790k and 20 GB of RAM
running Ubuntu 16.04. Since the machine had an Nvidia
gtx980ti, gtx980 and a Tesla K40c GPU, different models
were trained on different GPU’s simultaneously instead of
trying to train a single model on mixed hardware. The net
was optimized with the ADAM optimizer (rate = 0.0001,
β1 = 0.9, β2 = 0.999. The training dataset was first
resampled to 22050 Hz and partitioned into overlapping
blocks (length 65523 samples, stride 14341 samples). The
center 14341 samples of the desired source audio were used

as the ground-truth output for each training example, while
the entire block of mixed audio was used as the input.
Each batch contained 10 examples, and training proceeded
sequentially through the dataset. The gtx980 could not fit a
batch size of 10 so a batch size of 7 was used for some
models.

C. Evaluation Procedure

In order to construct a long audio sample for evaluation,
we first take overlapping blocks of the mixed audio using
the same procedure as during training, and infer the sep-
arated audio for each of these blocks independently. The
stride is selected so that the output samples can be directly
concatenated; we do not perform any filtering or interpolation
between these blocks.

V. RESULTS

We compare the qualitative results achieved when we
attempt to extract the drum beat from samples in our test
dataset. The baseline result, using MSE as a loss, produces
acceptable results after 300 epochs. Drums are heard dis-
tinctly, although they sound muffled and low-pass filtered;
incomplete separation causes some accompaniment and vo-
cals to be heard faintly, especially at higher frequencies.

Mean absolute error appears to penalize small errors more
strongly than MSE, and as a result, the MAE separated
audio becomes distinctly silent, rather than quiet, between
drum beats. Leakage of other sources remains. However, the
extracted audio sounds a bit more noisy, perhaps for the
reason that outliers are not as severely punished with this
error function.

Training using STFT loss function (1), i.e. squared errors
in magnitude and phase considered separately, leads to
numerical instabilities within the first epoch. We believe that
this arises from the numerically poor behavior of the phase
of the STFT for near-zero STFT coefficients. Adding low-
magnitude gaussian noise to the signal delays but does not
resolve this problem.

Phasor distance loss (STFT loss function (2)) directly
penalizes the norm of complex-valued discrepancies in the
output signal’s STFT, meaning that it takes both phase and
magnitude into account, and penalizes phase errors less when
the signal magnitude is small, while avoiding numerical
instabilities for near-silent signals. It shows remarkable per-
formance with only 26 epochs needed for qualitatively good
sound (at this point, the MSE loss had not yet achieved
subjectively acceptable separation). Although samples taken
at both 26 and 100 epochs show similar leakage of other
channels, the sound does not appear to have severe artifacts.
Training to 100 epochs only shows modest improvement,
with a slightly better silence between beats. Moreover,
the leakage of other channels (especially voice) and short
artifacts move from being consistent over all frequencies
to being localized to higher frequencies as the training
continues.

STFT loss function (3) is a generalization of phasor
distance loss, where errors in magnitude are considered

less significantly than errors in phase. It did not show any
subjectively detectable differences with α = 0.75 and did not
appear to converge with α = 0.25. Further work is needed
to ascertain the effect of the α as a hyperparameter.

Magnitude-only loss, i.e. STFT loss function (4), com-
pares the magnitude spectra of the STFT, while ignoring
all phase information. It shows significantly worse results
than baseline and phasor distance loss. Although the drum
beat is somewhat enhanced, other channels leak audibly, and
crackling is heard in certain sections. The sound appears
to have distortion similar to an overdriven amplifier, with
significant harmonics and a similar timbre.

None of the resulting outputs appear to have artifacts at
the boundaries where each inference outputs were stitched
(section IV.B) to construct continuous audio, suggesting
the model topology was effective at utilizing contextual
information in the larger input audio fragment to cleanly
predict the entirety of the output audio fragment.

A. Further work

All of the STFT-based losses use one fixed set of STFT
hyperparameters: window length 4096 with stride 2048. It is
very likely that these parameters strongly affect the quality
of results as well as the necessary time for training. Thus, the
effect of these parameters on the results needs to be explored.

Additionally, only the drum track was extracted from
source audio, due to time and computing power limitations.
For further work, we could investigate whether similar results
arise for attempts to extract other source tracks from the
mixed audio.

VI. CONCLUSIONS

Wave-U-Net has shown to be an effective strategy for
end to end sound source separation in the time domain.
Our experiments show that mean squared error is slightly
more effective than mean absolute error for extracting a
signal. Additionally, we introduce a loss metric that penalizes
discrepancies in signal STFTs in the frequency domain,
which shows promise as an effective method for speeding
up training and providing cleaner sound source separation.

ACKNOWLEDGMENT

We would like to acknowledge the invaluable instruction,
encouragement, and feedback of our instructor, Chris Curro.
We also acknowledge the invaluable moral support of our
peers and classmates in the Cooper EE classes of 2019 and
2020.

REFERENCES

[1] Andreas Jansson, Eric Humphrey, Nicola Montecchio, Rachel Bittner,
Aparna Kumar, Tillman Weyde. Singing Voice Separation with Deep
U-Net Convolutional Networks, 18th International Society for Music
Information Retrieval Conference, Suzhou, China, 2017.

[2] Aapo Hyvrinen and Erkki Oja. Independent Component Analysis: Al-
gorithms and Applications. Neural Networks, 13(4-5):411-430, 2000.

[3] Daniel D. Lee and H. Sebastian Seung. Algorithms for Non-negative
Matrix Factorization. NIPS, 2001.

[4] D. Griffin and Jae Lim. Signal estimation from modified short-time
fourier transform. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 32(2):236243, 1984.

[5] Daniel Stoller, Sebastian Ewert, and Simon Dixon. Wave-U-Net: A
multi-scale neural network for end-to-end audio source separation.
arXiv preprint arXiv:1806.03185, 2018.

[6] Yi Luo, Nima Mesgarani. TasNet: Surpassing Ideal Time-Frequency
Masking for Speech Separation. arXiv preprint arXiv:1809.07454,
2018.

[7] Emad M. Grais, Dominic Ward, and Mark D. Plumbley. Raw Multi-
Channel Audio Source Separation using Multi-Resolution Convolu-
tional Auto-Encoders. arXiv preprint arXiv:1803.00702, 2018.

[8] Olaf Ronneberger, Philipp Fischer, Thomas Brox. U-Net: Convolu-
tional Networks for Biomedical Image Segmentation arXiv preprint
arXiv:1505.04597, 2015.

[9] Zafar Rafii, Antoine Liutkus, Fabian-Robert Stter, Stylianos Ioannis
Mimilakis, and Rachel Bittner. The MUSDB18 corpus for music
separation, 2017.

[10] Andreas Jansson, Eric J. Humphrey, Nicola Montecchio, Rachel Bit-
tner, Aparna Kumar, and Tillman Weyde. Singing voice separation
with deep U-Net convolutional networks. In Proceedings of the Inter-
national Society for Music Information Retrieval Conference (ISMIR),
pages 323332., 2017.

APPENDIX

TABLE I
LISTING OF EACH DOWNSAMPLING LAYER IN OUR 22050 HZ MODEL.

Layer Num Operation Output samples Output channels
1 Input 65523 2
2 Conv1D 65509 24
3 downsample 32755 24
4 Conv1D 32741 48
5 downsample 16371 48
6 Conv1D 16357 72
7 downsample 8179 72
8 Conv1D 8165 96
9 downsample 4083 96

10 Conv1D 4069 120
11 downsample 2035 120
12 Conv1D 2021 144
13 downsample 1011 144
14 Conv1D 997 168
15 downsample 499 168
16 Conv1D 485 192
17 downsample 243 192
18 Conv1D 229 216
19 downsample 115 216
20 Conv1D 101 240
21 downsample 51 240
22 Conv1D 37 264
23 downsample 19 264

See section III.A for a description of each operation.

TABLE II
LISTING OF EACH UPSAMPLING LAYER IN OUR 22050 HZ MODEL.

Operation Output samples Output channels
Upsample 38 264
Conv1D 33 240
Concatenate (20) 33 480
Upsample 66 480
Conv1D 61 216
Concatenate (18) 61 432
Upsample 122 432
Conv1D 117 192
Concatenate (16) 117 384
Upsample 234 384
Conv1D 229 168
Concatenate (14) 229 336
Upsample 458 336
Conv1D 453 144
Concatenate (12) 453 288
Upsample 906 288
Conv1D 901 120
Concatenate (10) 901 240
Upsample 1802 240
Conv1D 1797 96
Concatenate (8) 1797 192
Upsample 3594 192
Conv1D 3589 72
Concatenate (6) 3589 144
Upsample 7178 144
Conv1D 7173 48
Concatenate (4) 7173 96
Upsample 14346 96
Conv1D 14341 24
Concatenate (2) 14341 48
Conv1D 14341 2

Concatenation operators concatenate over the channels dimension. Each
concatenation creates a skip connection from one specific layer in the
downsampling portion of the model; this layer is identified in parentheses
(using its number from Table 1). Further details are given in section III.A.

